255 lines
7.4 KiB
TypeScript
255 lines
7.4 KiB
TypeScript
import { GoogleGenAI } from "@google/genai";
|
|
// eslint-disable-next-line @typescript-eslint/no-var-requires
|
|
const mime = require("mime") as any;
|
|
import {
|
|
ImageGenerationOptions,
|
|
ImageGenerationResult,
|
|
ReferenceImage,
|
|
GeneratedImageData,
|
|
GeminiParams,
|
|
} from "../types/api";
|
|
import { StorageFactory } from "./StorageFactory";
|
|
|
|
export class ImageGenService {
|
|
private ai: GoogleGenAI;
|
|
private primaryModel = "gemini-2.5-flash-image-preview";
|
|
|
|
constructor(apiKey: string) {
|
|
if (!apiKey) {
|
|
throw new Error("Gemini API key is required");
|
|
}
|
|
this.ai = new GoogleGenAI({ apiKey });
|
|
}
|
|
|
|
/**
|
|
* Generate an image from text prompt with optional reference images
|
|
* This method separates image generation from storage for clear error handling
|
|
*/
|
|
async generateImage(
|
|
options: ImageGenerationOptions,
|
|
): Promise<ImageGenerationResult> {
|
|
const { prompt, filename, referenceImages, orgId, projectId } = options;
|
|
|
|
// Use default values if not provided
|
|
const finalOrgId = orgId || process.env["DEFAULT_ORG_ID"] || "default";
|
|
const finalProjectId =
|
|
projectId || process.env["DEFAULT_PROJECT_ID"] || "main";
|
|
|
|
// Step 1: Generate image from Gemini AI
|
|
let generatedData: GeneratedImageData;
|
|
let geminiParams: GeminiParams;
|
|
try {
|
|
const aiResult = await this.generateImageWithAI(prompt, referenceImages);
|
|
generatedData = aiResult.generatedData;
|
|
geminiParams = aiResult.geminiParams;
|
|
} catch (error) {
|
|
// Generation failed - return explicit error
|
|
return {
|
|
success: false,
|
|
model: this.primaryModel,
|
|
error:
|
|
error instanceof Error ? error.message : "Image generation failed",
|
|
errorType: "generation",
|
|
};
|
|
}
|
|
|
|
// Step 2: Save generated image to storage
|
|
try {
|
|
const finalFilename = `${filename}.${generatedData.fileExtension}`;
|
|
const storageService = await StorageFactory.getInstance();
|
|
const uploadResult = await storageService.uploadFile(
|
|
finalOrgId,
|
|
finalProjectId,
|
|
"generated",
|
|
finalFilename,
|
|
generatedData.buffer,
|
|
generatedData.mimeType,
|
|
);
|
|
|
|
if (uploadResult.success) {
|
|
return {
|
|
success: true,
|
|
filename: uploadResult.filename,
|
|
filepath: uploadResult.path,
|
|
url: uploadResult.url,
|
|
model: this.primaryModel,
|
|
geminiParams,
|
|
...(generatedData.description && {
|
|
description: generatedData.description,
|
|
}),
|
|
};
|
|
} else {
|
|
// Storage failed but image was generated
|
|
return {
|
|
success: false,
|
|
model: this.primaryModel,
|
|
geminiParams,
|
|
error: `Image generated successfully but storage failed: ${uploadResult.error || "Unknown storage error"}`,
|
|
errorType: "storage",
|
|
generatedImageData: generatedData,
|
|
...(generatedData.description && {
|
|
description: generatedData.description,
|
|
}),
|
|
};
|
|
}
|
|
} catch (error) {
|
|
// Storage exception - image was generated but couldn't be saved
|
|
return {
|
|
success: false,
|
|
model: this.primaryModel,
|
|
geminiParams,
|
|
error: `Image generated successfully but storage failed: ${error instanceof Error ? error.message : "Unknown storage error"}`,
|
|
errorType: "storage",
|
|
generatedImageData: generatedData,
|
|
...(generatedData.description && {
|
|
description: generatedData.description,
|
|
}),
|
|
};
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Generate image using Gemini AI - isolated from storage logic
|
|
* @throws Error if generation fails
|
|
*/
|
|
private async generateImageWithAI(
|
|
prompt: string,
|
|
referenceImages?: ReferenceImage[],
|
|
): Promise<{ generatedData: GeneratedImageData; geminiParams: GeminiParams }> {
|
|
const contentParts: any[] = [];
|
|
|
|
// Add reference images if provided
|
|
if (referenceImages && referenceImages.length > 0) {
|
|
for (const refImage of referenceImages) {
|
|
contentParts.push({
|
|
inlineData: {
|
|
mimeType: refImage.mimetype,
|
|
data: refImage.buffer.toString("base64"),
|
|
},
|
|
});
|
|
}
|
|
}
|
|
|
|
// Add text prompt
|
|
contentParts.push({
|
|
text: prompt,
|
|
});
|
|
|
|
const contents = [
|
|
{
|
|
role: "user" as const,
|
|
parts: contentParts,
|
|
},
|
|
];
|
|
|
|
const config = { responseModalities: ["IMAGE", "TEXT"] };
|
|
|
|
// Capture Gemini SDK parameters for debugging
|
|
const geminiParams: GeminiParams = {
|
|
model: this.primaryModel,
|
|
config,
|
|
contentsStructure: {
|
|
role: "user",
|
|
partsCount: contentParts.length,
|
|
hasReferenceImages: !!(referenceImages && referenceImages.length > 0),
|
|
},
|
|
};
|
|
|
|
try {
|
|
const response = await this.ai.models.generateContent({
|
|
model: this.primaryModel,
|
|
config,
|
|
contents,
|
|
});
|
|
|
|
// Parse response
|
|
if (
|
|
!response.candidates ||
|
|
!response.candidates[0] ||
|
|
!response.candidates[0].content
|
|
) {
|
|
throw new Error("No response received from Gemini AI");
|
|
}
|
|
|
|
const content = response.candidates[0].content;
|
|
let generatedDescription: string | undefined;
|
|
let imageData: { buffer: Buffer; mimeType: string } | null = null;
|
|
|
|
// Extract image data and description from response
|
|
for (const part of content.parts || []) {
|
|
if (part.inlineData) {
|
|
const buffer = Buffer.from(part.inlineData.data || "", "base64");
|
|
const mimeType = part.inlineData.mimeType || "image/png";
|
|
imageData = { buffer, mimeType };
|
|
} else if (part.text) {
|
|
generatedDescription = part.text;
|
|
}
|
|
}
|
|
|
|
if (!imageData) {
|
|
throw new Error("No image data received from Gemini AI");
|
|
}
|
|
|
|
const fileExtension = mime.getExtension(imageData.mimeType) || "png";
|
|
|
|
const generatedData: GeneratedImageData = {
|
|
buffer: imageData.buffer,
|
|
mimeType: imageData.mimeType,
|
|
fileExtension,
|
|
...(generatedDescription && { description: generatedDescription }),
|
|
};
|
|
|
|
return {
|
|
generatedData,
|
|
geminiParams,
|
|
};
|
|
} catch (error) {
|
|
// Re-throw with clear error message
|
|
if (error instanceof Error) {
|
|
throw new Error(`Gemini AI generation failed: ${error.message}`);
|
|
}
|
|
throw new Error("Gemini AI generation failed: Unknown error");
|
|
}
|
|
}
|
|
|
|
static validateReferenceImages(files: Express.Multer.File[]): {
|
|
valid: boolean;
|
|
error?: string;
|
|
} {
|
|
if (files.length > 3) {
|
|
return { valid: false, error: "Maximum 3 reference images allowed" };
|
|
}
|
|
|
|
const allowedTypes = ["image/png", "image/jpeg", "image/jpg", "image/webp"];
|
|
const maxSize = 5 * 1024 * 1024; // 5MB
|
|
|
|
for (const file of files) {
|
|
if (!allowedTypes.includes(file.mimetype)) {
|
|
return {
|
|
valid: false,
|
|
error: `Unsupported file type: ${file.mimetype}. Allowed: PNG, JPEG, WebP`,
|
|
};
|
|
}
|
|
|
|
if (file.size > maxSize) {
|
|
return {
|
|
valid: false,
|
|
error: `File ${file.originalname} is too large. Maximum size: 5MB`,
|
|
};
|
|
}
|
|
}
|
|
|
|
return { valid: true };
|
|
}
|
|
|
|
static convertFilesToReferenceImages(
|
|
files: Express.Multer.File[],
|
|
): ReferenceImage[] {
|
|
return files.map((file) => ({
|
|
buffer: file.buffer,
|
|
mimetype: file.mimetype,
|
|
originalname: file.originalname,
|
|
}));
|
|
}
|
|
}
|